V0. exp(K.T)

Function type Approximation of V0+KZ in multi-layer context. Equivalent to V0+KZ if use for first layer,
less sensitive to shallower conversion if deeper.
Definition of parameters V0 = constant velocity factor (instantaneous velocity at the surface).
K = constant compaction factor.
Operational applications Useful when geology presents linear compaction (often confirmed by measurements at least in clastic environments).

$$
V_{inst} = V0 e^{k \times T}
$$

\( \Rightarrow \) Hypothesis 1: \( Z = Z(t)\)

$$
\Rightarrow V_{inst}(t)=V0 e^{k \times T}
$$

\( Z(t) = \frac{V0}{k} (e^{kt}-1) \quad \) & \( \quad V_{inst} = V0e^{kt} \)

$$
\boldsymbol{
DZ = \int_{t_0}^{t_0+DT} V_{inst}dt = \int_{t_0}^{t_0+DT} V0 \times e^{kt} dt
}
$$

$$
\boldsymbol{
DZ= \frac{V0}{k}e^{kt_0} \times \left( e^{kDT} – 1 \right)
}
$$

$$
\boldsymbol{
V_{int}= \frac{V0}{k \times DT}e^{kt_0} \times \left( e^{kDT} – 1 \right)
}
$$