Bi Uniform Distribution Law

Parameters $$-\infty < min < mode < max < +\infty $$
Support $$x \in [min,max ] \quad and \quad p \in \:]0,1 [$$
PDF $$
PDF = \left\{ \begin{array}{rl}
\frac{0.5}{(mode-min)}, &\mbox{ for min $ \le x \le $ mode}\\
\frac{0.5}{(max-mode)}, &\mbox{ for mode $< x \le $ max}
\end{array} \right.
$$
CDF $$
CDF = \left\{ \begin{array}{rl}
0.5 \times \left( \frac{x-min}{(mode-min)} \right) \quad, &\mbox{ for min $\le x \le$ mode}\\
0.5 \times \left[ \left(\frac{x-min}{(max-mode)} \right)+1 \right], &\mbox{ for mode $< x \le$ max}
\end{array} \right.
$$
CDF-1 $$ CDF^{-1} = \left\{ \begin{array}{rl}
min \qquad \qquad \quad, &\mbox{ for p $< $ 0}\\
min + (2 \times p) (mode-min), &\mbox{ for $0\le p <0.5$ }\\ mode+ (2 \times p) (max-mode), &\mbox{ for $0.5\le p \le1$ }\\ max \qquad \qquad \quad, &\mbox{ for p > 1}
\end{array} \right. $$