| Function type | Instantaneous velocity is a function of depth. This function introduces a linear increase in velocity as depth values increase. | 
| Definition of parameters | 
		V0 = constant velocity factor (instantaneous velocity at the surface).  K = constant compaction factor.  | 
| Operational applications | Useful when geology presents linear compaction (often confirmed by measurements at least in clastic environments). | 
	$$
	V_{inst} = V0 + k \times Z
	$$
\( \Rightarrow \) Hypothesis 1: \( Z = Z(t)\)
	$$
	\Rightarrow V_{inst}(t)=V0+k \times Z(t)
	$$
	\(
	\Rightarrow \frac{DZ(t)}{dt} = V0 + k \times Z(t) \equiv
	\)
	first order differential equation
\( \Rightarrow \) General solution \( Z(t) = Ce^{kt}- \frac{V0}{k} \)
With \( Z(0) = 0 = C – \frac{V0}{k} \Rightarrow C = \frac{V0}{k} \)
	\(
	Z(t) = \frac{V0}{k} \left( e^{kt} – 1 \right)\)
	&
	\( V_{inst} = V0e^{kt} \)
	
	$$
	\boldsymbol{
	DZ = \int_{t_0}^{t_0+DT} V_{inst}dt = \int_{t_0}^{t_0+DT} V0 \times e^{kt} dt
	}
	$$
	$$
	\boldsymbol{
	DZ= \frac{V0}{k}e^{kt_0} \times \left( e^{kDT} – 1  \right)
	}
	$$
	$$
	\boldsymbol{
	V_{int}= \frac{V0}{k \times DT}e^{kt_0} \times \left( e^{kDT} – 1  \right)
	}
	$$

