Gaussian Law

Parameters

$$µ \in \mathbb{R} $$

$$\sigma^2>0$$

Support $$x \in [\mathbb{R}] \quad and \quad p \in \:]0,1 [$$
PDF $$
PDF = \frac{1}{ \sqrt{2 \times \sigma^2 \pi }} e^{ \frac { (x-µ)^2 } { 2 \sigma^2 } }
$$
CDF $$
CDF = \frac {1}{2} \left[
1 + erf \left( \frac{x-µ}{\sigma \sqrt{2}} \right)
\right]
$$
CDF-1 $$ CDF^{-1} = \sigma \times \sqrt {2} er f^{-1} (2 \times p) + µ $$